- U-I-R-Messtechnik
- Signalgeneratoren
- Frequenzmesser
- Oszilloskope
- Analyzer & Wobbler
- Leistungsmesstechnik
- R-L-C-Messtechnik
- Prüftechnik, Spezialmesstechnik
- Energieversorgung
- Funktechnik
- Radar & GHz
- NF & HiFi
- Licht & Optik
- Steuer- & Regelungstechnik
- Telefonie & Kommunikation
- Mechanik
- Avionik
- Sammeln & Seltenes
- Bauelemente
- ...
- Röhrenliste
- Manuals & Schaltpläne
- sonstiges...
 
InformationenWanderfeldröhre UV-1010
Art.Nr.: roe-wan-0004Hochfrequenz- Leistungsverstärker UV-1010, russische Bezeichnung УВ-1010.
Technical datas below.
Wanderfeldröhre UV-1010, УВ-1010
* Hochfrequenz- LeistungsverstärkerWanderfeldröhre UV-1010, UW-1010, УВ-1010
Datenblätter Wanderfeldröhre UV-1010, UW-1010, УВ-1010
Technische Daten Wanderfeldröhre UV-1010 :
TRAVELLING-WAVE TUBE UV-1010
PRINCIPAL TECHNICAL DATA
Denomination of parameter, measurement unit | Significances of parameters | ||
allowable operating | actual | ||
minimal | maximum | ||
Operating frequency range, MHz | 2460-3750 | – | 2460-3750 |
Behaviour N1 | |||
1. Filament voltage, V | 6.3-5% | 6.3+5% | 6.3 |
2. Control electrode voltage, V | nom-0.5% | nom+0.5% | |
3. First anode voltage, V | nom-0.5% | nom+0.5% | |
4. Slow-wave structure voltage, approximately, V | 1100±0.5% | 1300±0.5% | |
5. Collector voltage, V | 1400-5% | 1400+5% | 1400 |
6. Filament current, A | 0.5 | 0.85 | |
7. Slow-wave structure current, µA | – | 3 | |
8. Collector current, µA | – | 15 | |
9. Power gain, dB | 28 | – | |
10. Gain flatness, dB | – | 7 | |
Behaviour N2 | |||
1. Filament voltage, V | 6.3-5% | 6.3+5% | 6.3 |
2. Control electrode voltage, V | -100±0.5% | 0 | |
3. First anode voltage, V | 100±0.5% | 300±0.5% | |
4. Slow-wave structure voltage, approximately, V | 1000±0.5% | 1300±0.5% | |
5. Collector voltage, V | 1400-5% | 1400+5% | 1400 |
6. Filament current, A | 0.5 | 0.85 | |
7. Slow-wave structure current, µA | – | 3 | |
8. Collector current, µA | – | 15 | |
9. Power gain, dB* | |||
Ambient temperature, °C | -60 | +85 | – |
Total starting time in the behaviour N1, min, min | – | 1 | – |
Minimum operating time, h | 2000 | – | – |
- Instability of the supplying voltage must not exceed the significances indicated in the present table.
- Non-nominal significance of a parameter indicated in the column "Significances of parameters actual".
- * The behaviour N2 is chosen by the power gain of 10 dB in the range point corresponding to the minimum value of the power gain.
ELECTRODES-TO-LEADS CONNECTION DIAGRAM
Designation of leads | Denomination of electrodes and other elements of diagram | Number of leads | |
A2 | Second anode, slow-wave structure | 5 | |
A1 | First anode | 3 | |
PK | Cathode, heater | 7 | |
P | Heater | 2 | |
Y | Control electrode | 1 | |
Kl | Collector, case | ||
I | Input | ||
II | Output |
OPERATION INSTRUCTIONS
During
the TWT operation all electrode voltage are set to the nominal values
excluding the slow-wave structure voltage which is adjusted by the
minimum value of the gain flatness.
The nominal electrical behaviour is chosen by the producer for a given
specimen of the TWT in the following limits:
ehaviour N1 | |
filament voltage of | 6.3 V; |
control electrode voltage from | -50 to 0 V; |
first anode voltage from | 150 to 300 V; |
slow-wave structure voltage from | 1100 to 1300 V; |
collector voltage of | 1400 V; |
VSWR of the load not more than | 2. |
Behaviour N2 | |
filament voltage of | 6.3 V; |
control electrode voltage from | -100 to 0 V; |
first anode voltage from | 100 to 300 V; |
slow-wave structure voltage from | 1000 to 1300 V; |
collector voltage of | 1400 V; |
VSWR of the load not more than | 2. |
All
voltages are given respectively the cathode.
The filament voltages can be direct or alternating with a frequency of
50-400 Hz.
Special attention should be paid to setting the nominal filament
voltage as stated in the certificate.
The TWT's collector is connected to the case and during operation must
be grounded.
It is allowed to shorten the flexible leads of the TWT supply up to 20
mm.
The TWT has natural cooling.
The supply circuit must provide the minimum slow-wave structure current
when switching on and switching off the high voltage and the minimum
filament current inrush when switching on the filament voltage (not
more than three-fold nominal value of the filament current).
To prevent the TWT from the accidental disturbances of the supply
regime in the supply circuit of the slow-wave structure it is necessary
to set the relay for the maximum current which should remove the high
voltages by the slow-wave structure current more than 4 mA.
By servicing the TWT the mechanical injury and the approach of any
ferromagnetic materials at the distance less than 30 mm from the TWT
case and the magnetic field sources at the distance providing the value
of their magnetic field on the TWT surface more than 30 Oe are not
allowed.
It is allowed to use the instruments only of nonmagnetic materials.
It is forbidden to connect and to disconnect supply leads of the TWT to
the power supply by switched - on supplying voltages.
It is necessary to fix the TWT in the equipment in two-three places by
means of embracing clamps of nonmagnetic materials. To prevent the
deformation of the TWT surface place the gaskets of elastic material
between the clamps and the TWT case.
The clamps should be placed at the distance not less than 10 mm from
the radiator and the coaxial input and the coaxial output. The clamp
width must be not less than 10 mm.
SWITCH ON PROCEDURE
Switch on the filament
voltage, set it equal to 6.3 V and heat the cathode during 1 - 2 min.
Switch on the high voltage and set the nominal values of the collector
voltage, slow-wave structure voltage and control electrode voltage.
Set the nominal value of the first anode voltage.
Apply the signal at the TWT input.
Adjust the slow-wave structure voltage by the optimum value of the
power gain.
By repeated switching of the adjusted TWT it is allowed to switch on
all high voltages simultaneously after the cathode has been heated up
over the period of 1 - 2 min, if the increase time of the first anode
voltage is equal or more than the increase time of the slow-wave
structure voltage.
SWITCH OFF PROCEDURE
Switch off the first anode
voltage.
Switch off the voltages of the slow-wave structure, collector and
control electrode.
It is permitted to switch off simultaneously all high voltages, if the
decay time of the first anode voltage is equal or less than the decay
time of the slow-wave structure voltage.
Switch off the filament voltage.
The filament voltage is sure to be switched off the last.
Allgemeines zur Wanderfeldröhre:
Die Wanderfeldröhre gehört zu den Laufzeitröhren.
Eine Laufzeitröhre ist eine Elektronenröhren zur Erzeugung oder -Verstärkung von Mikrowellen. Laufzeitröhren finden also ihre Anwendung in der Hochfrequenztechnik.
Bei den Laufzeitröhren sind die Entladungssyteme so konstruiert, daß Laufzeiteffekte das Funktionieren der Röhre bewirken.
Zunächst wird eine homogene Elektronenströmung konstanter Geschwindigkeit erzeugt, deren Elektronen dann einem steuernden elektrischen HF-Feld ausgesetzt werden, in dem sie je nach Startphase beschleunigt oder verzögert werden.
Bei den Langzeitröhren unterscheidet man zwischen Triftröhren und Lauffeldröhren.
In der Praxis verwendete Laufzeitröhren sind Zweikammer- und Mehrkammerklystrons, Wanderfeldröhren, Rückwärtswellenröhren und Magnetrons sowie gewisse Hybridformen wie Wanderfeldklystrons.
Die Wanderfeldröhre dient der Verstärkung elektrischer Signale. Der Elektronenstrahl wird durch ein nicht mitgezeichnetes homogenes axiales Magnetfeld, herrührend von einem auf möglichst gewicht- und raumsparende Weise gestalteten Elektro- oder Permanentmagneten, oder auch von einem periodischen Permanentfeld, fokussiert und zum Elektronenauffänger geführt. Die zu verstärkende HF-Leistung wird katodenseitig auf die Wendelleitung gekoppelt, wohingegen die verstärkte HF-Leistung kollektorseitig ausgekoppelt wird.
Wanderfeldröhren werden wegen ihrer guten Linearität (Breitbandeigenschaften) und Rauscharmut und wegen des großen Leistungsspielraumes mannigfaltig eingesetzt, z.B. in Bodenstationen für Satellitenfunk mit Dauerstrichleistungen im kW-Bereich, als Satellitenröhren (bis herab zu 20 W interessant; 650g Masse) und für Richtfunktechnik (2700 Kanäle bei 6 ... 7 GHz) sowie für die Radar-Impulstechnik mit Impulsleistungen bis zu mehreren MW. Die Wanderfeldröhre ist ein weit verbreitetes Bauteil in der Radartechnik.
Der Frequenzbereich der Verstärkung ist kleiner als 0,05 dB x MHz hoch -1 im ganzen Bereich, bei optimaler Frequenz sogar noch eine Zehnerpotenz geringer.
Die Zuverlässigkeit der Wanderfeldröhren ist groß, die Lebensdauer dieser Laufzeitröhren liegt bei Größenordnungen von 20 000 Stunden.